Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc, Bạn đang xem: Hệ số góc của 2 đường thẳng vuông gócCho hai đường thẳng y = ax + b và y’ = a’x + b’:Thông báo: Giáo án, tài liệu miễn phí có chia sẻ tại nhóm facebook Cộng Đồng Giáo Viên Trung học cơ sở mọi người tham gia để tải
2. Vẽ hai đường thẳng vuông góc. Đề bài: Cho một điểm O và một đường thẳng a. Hãy vẽ đường thẳng a’ đi qua O và vuông góc với đường thẳng a. Bài giải: Bài toán được chia thành hai trường hợp: + Trường hợp 1: Điểm O cho trước nằm trên đường thẳng a. Cách vẽ
ĐĂNG KÍ HỌC : THẦY THẾ HÙNG YOUTUBER HÀ NỘI : 0388 723 091add zalo 0388 723 091 trường phái kết nối tri thứchttps://drive.google.com/drive
- HS nhận xét: 2 đường thẳng BC và DC tạo thành 4 góc vuông chung đỉnh. - Kiểm tra lại bằng Ê ke: + GV dùng Ê ke vẽ góc vuông đỉnh O có cạnh OM và ON rồi kéo dài 2 cạnh góc vuông để được 2 đường thẳng OM và ON vuông góc với nhau. + Hai đường thẳng vuông góc OM và ON tạo
bài 2:cho tam giác ABC cân tại A .Trên tia đối của BC lấy điểm M ,trên tia đối của CB lấy N sao cho BM=CN, Vẽ BD vuông góc AM tại D , CE vuông góc AN tại E.Cho biết AB=10cm,BH=6cm.
Sơ đồ tư duy để hệ thống lí thuyết dạng này như sau: Bài toán về gócbao gồm xác định và tính: góc giữa hai đường thẳng, góc giữa đường thẳng với mặt phẳng, góc giữa hai mặt phẳng. Trong đó, tính và xác định góc giữa hai đường thẳng là mấu chốt cơ bản. Các
rvPZ1. Để chứng minh 2 đường thẳng vuông góc trong chương trình toán THCS các em có thể sử dụng một trong những cách mà chia sẻ. Tùy vào chương trình đang học mà học sinh sử dụng cách chứng hai đường thẳng vuông góc cho phù hợp. – Cách 1 Hai đường thẳng đó cắt nhau và tạo ra một góc 90. – Cách 2 Hai đường thẳng đó chứa hai tia phân giác của hai góc kề bù. Tính chất Góc tạo bởi hai tia phân giác của 2 góc kề bù bằng 90 Hình học Lớp 6 – Cách 3 Hai đường thẳng đó chứa hai cạnh của tam giác vuông. – Cách 4 Tính chất từ vuông góc đến song song Có một đường thẳng thứ 3 vừa song song với đường thẳng thứ nhất vừa vuông góc với đường thẳng thứ hai. – Cách 5 Sử dụng tính chất đường trung trực của đoạn thẳng. Mọi điểm cách đều hai đầu mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. – Cách 6 Sử dụng tính chất trực tâm của tam giác. – Cách 7 Sử dụng tính chất đường phân giác, trung tuyến ứng với cạnh đáy của tam giác cân. – Cách 8 Hai đường thẳng đó chứa hai đường chéo của hình vuông, hình thoi. – Cách 9 Sử dụng tính chất đường kính và dây cung trong đường tròn. – Cách 10 Sử dụng tính chất tiếp tuyến trong đường tròn.
Hai đường thẳng vuông góc Hai đường thẳng cắt nhau tạo thành những góc vuông là hai đường thẳng thẳng vuông góc. Kí hiệu \xx' \bot yy'\. Tính chất Có một và chỉ một đường thẳng a’ đi qua điểm O cho trước và vuông góc với đường thẳng a cho trước. Đường trung trực của đoạn thẳng Đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng được gọi là đường trung trực của đoạn thẳng ấy. xy là đường trung trực của đoạn thẳng AB. Ví dụ 1 Cho AOM có số đo bằng \{120^0}\. Vẽ các tia OB, OC nằm trong góc AOM sao cho \OB \bot OA,OC \bot OM.\ Tính số đo góc BOC. Hướng dẫn giải OB nằm giữa OA, OM mà \\begin{array}{l}\widehat {AOB} = {90^0}\\\widehat {AOM} = {120^0}\end{array}\. Vậy \\widehat {BOM} = {120^0} - {90^0} = {30^0}\. \\begin{array}{l}\widehat {MOB} = {30^0}\\\widehat {MOC} = {90^0}\end{array}\. Vậy OB nằm giữa OM, OC \\widehat {BOC} = {90^0} - {30^0} = {60^0}\. Ví dụ 2 Cho góc xOy tù, ở miền trong góc ấy dựng các tia Oz và Ot sao cho Oz vuông góc với Ox, Ot vuông góc Oy. Tính tổng số đo của hai góc xOy và zOt. Hướng dẫn giải Ta có Ox vuông góc với Oz nên \\widehat {xOz} = {90^0}\ Ot vuông góc với Oy nên \\widehat {tOy} = {90^0}\ Nên \\widehat {xOy} + \widehat {zOt} = \widehat {tOy} + \widehat {xOt} + \widehat {zOt}\ \ = \widehat {tOy} + \widehat {xOz} = {180^0}\. Ví dụ 3 Cho góc aOb có số đo bằng \{100^0}\. Dựng ở ngoài góc ấy hai tia Oc và Od theo thứ tự vuông góc với Oa và Ob. Gọi Ox là tia phân giác của góc aOb và Oy là tia phân giác của góc cOd. a. Chứng minh rằng hai tia Ox và Oy đối nhau. b. Tìm số đo các góc xOc và bOy. Hướng dẫn giải Ta có \\widehat {aOb} = {100^0},\,\,\widehat {aOc} = {90^0},\widehat {bOd} = {90^0}\ \\begin{array}{l} \Rightarrow \widehat {cOd} = {360^0} - \widehat {aOb} + \widehat {aOc} + \widehat {bOd}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,{360^0}\, - {100^0} + {90^0} + {90^0} = {360^0} - {280^0} = {80^0}.\end{array}\ Ox là tia phân giác của \\widehat {aOb}\ nên \\widehat {xOa} = \frac{1}{2}\widehat {aOb} = \frac{1}{2}{.100^0} = {50^0}\ Oy là tia phân giác của \\widehat {cOy}\ nên \\widehat {cOy} = \frac{1}{2}\widehat {cOd} = \frac{1}{2}{.80^0} = {40^0}\ Do đó \\widehat {xOy} = \widehat {xOa} + \widehat {aOc} + \widehat {cOy}\ \ = {50^0} + {90^0} + {40^0}\ Hay \\widehat {xOy} = {180^0}\ Suy ra Ox và Oy là hai tia đối nhau. b. Ta có \\widehat {xOc} = \widehat {xOa} + \widehat {aOc} = {50^0} + {90^0} = {140^0}\. \\widehat {bOy} = \widehat {bOd} + \widehat {dOy} = {90^0} + {40^0} = {130^0}\.
Ví dụ 1 Cho hình lập phương Hãy xác định góc giữa các cặp vectơ sau đây a \\overrightarrow {AB} ,\overrightarrow {EG} .\ c \\overrightarrow {AB} ,\overrightarrow {DH}\. Hướng dẫn giải a Vì EG // AC nên góc giữa \\overrightarrow {AB} ,\overrightarrow {EG}\ cũng bằng góc giữa \\overrightarrow {AB}\ và \\overrightarrow {AC}\ Vậy \\left {\overrightarrow {AB} ;\overrightarrow {EG} } \right = \left {\overrightarrow {AB} ;\overrightarrow {AC} } \right = {45^0}.\ b Vì AB // DG nên góc giữa \\overrightarrow {AB} ,\overrightarrow {DH}\ cũng bằng góc giữa \\overrightarrow {DC}\ và \\overrightarrow {DH}\ Vậy \\left {\overrightarrow {AB} ;\overrightarrow {DH} } \right = \left {\overrightarrow {AB} ;\overrightarrow {DH} } \right = {45^0}.\ Ví dụ 2 Cho hình chóp tam giác có SA = SB =SC và có \\widehat {{\rm{ASB}}} = \widehat {BSC} = \widehat {CSA}.\ Chứng minh rằng \SA \bot BC, SB\bot AC, SC \bot AB.\ Hướng dẫn giải Xét các tích vô hướng \\overrightarrow {SA} .\overrightarrow {BC} ,\overrightarrow {SB} .\overrightarrow {AC} ,\overrightarrow {SC} .\overrightarrow {AB} .\ Ta có \\begin{array}{l} \overrightarrow {SA} .\overrightarrow {BC} = \overrightarrow {SA} .\overrightarrow {SC} - \overrightarrow {SB} = \overrightarrow {SA} .\overrightarrow {SC} - \overrightarrow {SA} .\overrightarrow {SB} \\ = \left {\overrightarrow {SA} } \right.\left {\overrightarrow {SC} } \right.c{\rm{os}}\widehat {{\rm{CSA}}} - \left {\overrightarrow {SA} } \right.\left {\overrightarrow {SB} } \rightc{\rm{os}}\widehat {{\rm{ASB}}} \end{array}\ Theo giá thuyết \\left {\overrightarrow {SB} } \right = \left {\overrightarrow {SC} } \right\ Và \c{\rm{os}}\widehat {{\rm{CSA}}} = c{\rm{os}}\widehat {{\rm{ASB}}} \Rightarrow \overrightarrow {SA} .\overrightarrow {BC} = 0\ Vậy \SA \bot BC.\ Chứng minh tương tự ta có \SB\bot AC, SC \bot AB.\ Ví dụ 3 Cho tứ diện ABCD có AB ⊥ AC và AB ⊥ BD. Gọi P và Q lần lượt là trung điểm của AB và CD. Chứng minh rằng AB và PQ là hai đường thẳng vuông góc với nhau. Lời giải Ta có \\overrightarrow {PQ} = \overrightarrow {PA} + \overrightarrow {AC} + \overrightarrow {CQ}\ Và \\overrightarrow {PQ} = \overrightarrow {PB} + \overrightarrow {BD} + \overrightarrow {DQ}\ Do đó \2\overrightarrow {PQ} = \overrightarrow {AC} + \overrightarrow {BD}\ Vậy \2.\overrightarrow {PQ} .\overrightarrow {AB} = \left {\overrightarrow {AC} + \overrightarrow {BD} } \right.\overrightarrow {AB} = \overrightarrow {AC} .\overrightarrow {AB} + \overrightarrow {BD} .\overrightarrow {AB} = 0\ Hay \\overrightarrow {PQ} .\overrightarrow {AB} = 0\ Tức là \PQ \bot AB.\ Ví dụ 4 Cho tứ diện ABCD có AB=AC=AD=a, \\widehat {BAC} = \widehat {BAD} = {60^0}.\. a Chứng minh rằng AB vuông góc CD. b Nếu I, J lần lượt là trung điểm của AB và CD thì \AB \bot IJ.\ Hướng dẫn giải a Ta có \\begin{array}{l} \overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} \left {\overrightarrow {AD} - \overrightarrow {AC} } \right = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AC} \\ = \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right.\cos BAD - \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right.\cos BAC \end{array}\ Mặt khác ta có \AB = AC = AD,\widehat {BAC} = \widehat {BAD}\ Nên \\overrightarrow {AB} .\overrightarrow {AC} = \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right.\cos BAD - \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right.\cos BAC = 0\ Vậy AB vuông góc với CD. b Do I, J là trung điểm của AB và CD nên ta có \\overrightarrow {IJ} = \frac{1}{2}\left {\overrightarrow {AD} + \overrightarrow {BC} } \right\ Do đó \\begin{array}{l} \overrightarrow {AB} .\overrightarrow {IJ} = \frac{1}{2}\left {\overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} \overrightarrow {BC} } \right = \frac{1}{2}\left {\overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} \overrightarrow {BA} + \overrightarrow {AB} .\overrightarrow {AC} } \right\\ = \frac{1}{2}\left {\left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right\cos {{60}^0} - {{\overrightarrow {AB} }^2} + \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right\cos {{60}^0}} \right\\ = \frac{1}{2}\left {\frac{1}{2}{a^2} - {a^2} + \frac{1}{2}{a^2}} \right = 0 \end{array}\ Vậy AB và IJ vuông góc nhau.
Contents1 Chuyên đề luyện thi vào 10 Tìm điều kiện của m để hai đường thẳng cắt nhau, song song, vuông góc hoặc trùng nhau2 I. Bài toán tìm m để hai đường thẳng cắt nhau, song song, trùng nhau và vuông II. Bài tập ví dụ về bài toán tìm m để hai đường thẳng song song, cắt nhau, trùng nhau và vuông III. Bài tập tự luyện về bài toán chứng minh đồ thị hàm số luôn đi qua một điểm cố định Chuyên đề luyện thi vào 10 Tìm điều kiện của m để hai đường thẳng cắt nhau, song song, vuông góc hoặc trùng nhau I. Bài toán tìm m để hai đường thẳng cắt nhau, song song, trùng nhau và vuông gócII. Bài tập ví dụ về bài toán tìm m để hai đường thẳng song song, cắt nhau, trùng nhau và vuông gócIII. Bài tập tự luyện về bài toán chứng minh đồ thị hàm số luôn đi qua một điểm cố định Bạn đang xem 2 đường thẳng vuông góc lớp 10 Tìm m để hai đường thẳng song song, cắt nhau, vuông góc hoặc trùng nhau là một dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán được biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham Câu hỏi trắc nghiệm Hàm số bậc nhấtToán nâng cao lớp 9 Chủ đề 4 Hàm số bậc nhất – hàm số bậc haiHàm số bậc nhấtĐể tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 9, mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 9 sau Nhóm Luyện thi lớp 9 lên 10. Rất mong nhận được sự ủng hộ của các thầy cô và các đề này được biên soạn gồm hướng dẫn giải chi tiết cho dạng bài tập “Tìm m thỏa mãn điều kiện vị trí tương đối của hai đường thẳng”, vốn là một câu hỏi điển hình trong đề thi tuyển sinh vào lớp 10. Đồng thời tài liệu cũng tổng hợp thêm các bài toán để các bạn học sinh có thể luyện tập, củng cố kiến thức. Qua đó sẽ giúp các bạn học sinh ôn tập các kiến thức, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi tiết. Xem thêm Hướng Dẫn Cách Chơi 2 Acc Vltk Mobile Trên Bluestacks, Cách Mở Nhiều Cửa Sổ Bluestacks Cùng Lúc I. Bài toán tìm m để hai đường thẳng cắt nhau, song song, trùng nhau và vuông góc + Cho hai đường thẳng d y = ax + b và d’ y = a’x + b- Hai đường thẳng cắt nhau d cắt d’ khi a ≠ a”- Hai đường thẳng song song với nhau d // d’ khi a = a” và b ≠ b”- Hai đường thẳng vuông góc d ⊥ d” khi = -1- Hai đường thẳng trùng nhau khi a = a” và b = b”+ Nếu bài toán cho 2 hàm số bậc nhất y = ax + b và y = a’x + b’ thì phải thêm điều kiện a ≠ 0 và a” ≠ 0 II. Bài tập ví dụ về bài toán tìm m để hai đường thẳng song song, cắt nhau, trùng nhau và vuông góc Bài 1 Cho hai hàm số y = kx + m -2 và y = 5 – k.x + 4 – m. Tìm m, k để đồ thị của hai hàm sốa, Trùng nhaub, Song song với nhauc, Cắt nhauLời giảiĐể hàm số y = kx + m – 2 là hàm số bậc nhất khi k ≠ 0Để hàm số y = 5 – kx + 4 – m là hàm số bậc nhất khi 5 – k ≠ 0 ⇔ k ≠ 5a, Để đồ thị của hai hàm số trùng nhau Vậy với ; m = 3 thì đồ thị của hai hàm số trùng nhaub, Để đồ thị của hai hàm số song song với nhau Vậy với ; m ≠ 3 thì đồ thị của hai hàm số song song với nhauc, Để đồ thị của hai hàm số cắt nhau ⇔ k ≠ 5 – k ⇔ 2k ≠ 5 ⇔ Vậy với thì hai đồ thị hàm số cắt nhauBài 2 Cho hàm số y = 2m – 3x + m – 5. Tìm m để đồ thị hàm sốa, Tạo với 2 trục tọa độ một tam giác vuông cânb, Cắt đường thẳng y = 3x – 4 tại một điểm trên Oyc, Cắt đường thẳng y = -x – 3 tại một điểm trên OxLời giảiĐể hàm số là hàm số bậc nhất ⇔ 2m – 3 ≠ 0 ⇔ a, Gọi giao điểm của hàm số với trục Ox là A. Tọa độ của điểm A là Độ dài của đoạn Gọi giao điểm của hàm số với trục Oy là B. Tọa độ của điểm B là B 0; m – 5Độ dài của đoạn OB = m – 5 Ta có tam giác OAB là tam giác vuông tại AĐể tam giác OAB là tam giác vuông cân Vậy với m = 1 hoặc m = 2 thì đồ thị hàm số tạo với hai trục tọa độ tam giác vuông cânb, Gọi A là điểm đồ thị hàm số cắt đường thẳng y = 3x – 4 tại một điểm trên trục Oy trục tung⇒ A 0; bThay tọa độ điểm A vào đồ thị hàm số y = 3x – 4 ta có b = 4Điểm A0; 4 thuộc đồ thị hàm số y = 2m – 3x + m – 5 nên ta có4 = 2m – 3. 0 + m – 5 ⇔ m – 5 = 4 ⇔ m = 9 thỏa mãnVậy với m = 9 thì đồ thị hàm số cắt đường thẳng y = 3x – 4 tại một điểm trên trục tungc, Gọi B là điểm đồ thị hàm số cắt đường thẳng y = – x – 3 tại một điểm trên trục Ox trục hoành⇒ B a; 0Thay tọa độ điểm B vào đồ thị hàm số y = – x – 3 ta có a = – 3Điểm B -3; 0 thuộc đồ thị hàm số y = -x – 3 nên ta có0 = -3. 2m – 3 + m – 5 ⇔ -5m + 4 = 0 ⇔ m = thỏa mãnVậy với thì đồ thị hàm số cắt đường thẳng y = -x – 3 tại một điểm trên trục hoànhBài 3 Cho hai đường thẳng d1 y = m + 1x + 2 và d2 y = 2x + 1. Tìm m để hai đường thẳng cắt nhau tại một điểm có hoành độ và tung độ trái dấuLời giảiĐể hai đường thẳng cắt nhau thì m + 1 ≠ 2 ⇔ m ≠ 1Phương trình hoành độ giao điểmm + 1 x + 2 = 2x + 1⇔ mx + x + 2 = 2x + 1⇔ x m + 1 – 2 = -1⇔ x m – 1 = -1 Với Để hoành độ và tung độ trái dấu thì Vậy A1; 1Ba đường thẳng đồng quy nên đồ thị hàm số y = m – 2x + m + 3 đi qua điểm A1; 1Thay tọa độ điểm A vào phương trình ta có 1 = 1.m – 2 + m + 3 hay m = 0Vậy với m = 0 thì ba đường thẳng đồng quy III. Bài tập tự luyện về bài toán chứng minh đồ thị hàm số luôn đi qua một điểm cố định Bài 1 Cho hàm số y = 2x + 3k và y = 2m + 1x + 2k – 3. Tìm điều kiện của m và k để đồ thị của hai hàm số là Cách tính delta và delta phẩy phương trình bậc 2 Suy nghĩ về câu tục ngữ Một cây làm chẳng nên non, ba cây chụm lại nên hòn núi cao Viết đoạn văn nghị luận về hiện tượng học tủ, học vẹt 19 Đoạn văn viết về Sở thích bằng tiếng Anh Trình bày suy nghĩ của em về trách nhiệm của thế hệ trẻ hôm nay đối với đất nước trong hoàn cảnh mới Tính m để phương trình bậc hai có hai nghiệm trái dấu Tìm m để phương trình có 2 nghiệm x1 x2 thỏa mãn điều kiện cho trước
Tài liệu gồm 39 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề đường thẳng vuông góc – đường thẳng song song trong chương trình Hình học quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề đường thẳng vuông góc – đường thẳng song song BÀI 1. HAI GÓC ĐỔI ĐỈNH. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu phát biểu đúng. + Dạng 2. Vẽ hình theo yêu cầu của đề bài rồi tìm cặp góc đối đỉnh hoặc không đối đỉnh. + Dạng 3. Vẽ hình rồi tính số đo của góc. + Dạng 4. Tìm các cặp góc bằng nhau. + Dạng 5. Gấp giấy để chứng tỏ hai góc đối đỉnh thì bằng nhau. + Dạng 6. Nhận biết hai tia đối nhau. BÀI 2. HAI ĐƯỜNG THẲNG VUÔNG GÓC. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu phát biểu đúng. + Dạng 2. Vẽ đường thẳng vuông góc, vẽ đường trung trực của một đoạn. + Dạng 3. Gấp giấy để tạo thành đường vuông góc hay đường trung trực. + Dạng 4. Nhận biết hai đường thẳng vuông góc, nhận biết đường trung trực của một đoạn thẳng. + Dạng 5. Tính số đo của góc. BÀI 3. CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG. + Dạng 1. Vẽ hình và tìm cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía. + Dạng 2. Tính số đo góc khi biết một trong bốn góc tạo bởi hai đường thẳng. + Dạng 3. Tìm các cặp góc bằng nhau, các cặp góc bù nhau. BÀI 4. HAI ĐƯỜNG THẲNG SONG SONG. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu phát biểu đúng. + Dạng 2. Vẽ một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Nhận biết hai đường thẳng song song. [ads] BÀI 5. TIÊN ĐỀ Ơ – CLIT VỀ ĐƯỜNG THẲNG SONG SONG. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu trả lời đúng. + Dạng 2. Vẽ đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Tính số đo góc tạo bởi một đường thẳng cắt hai đường thẳng song song. + Dạng 4. Vận dụng tính chất hai đường thẳng song song để nhận biết hai góc bằng nhau hoặc bù nhau. + Dạng 5. Vận dụng dấu hiệu nhận biết hai đường thẳng song song và tính chất hai đương thẳng song song. BÀI 6. TỪ VUÔNG GÓC ĐẾN SONG SONG. + Dạng 1. Hoàn thành một câu phát biểu bằng cách điền vào chỗ trống, bằng cách nhìn vào hình vẽ hoặc chọn câu trả lời đúng. + Dạng 2. Nhận biết hai đường thẳng song song vì chúng cùng vuông góc hoặc cùng song song với một đường thẳng thứ ba. + Dạng 3. Nhận biết hai đường thẳng vuông góc. + Dạng 4. Tính số đo một góc bằng cách vẽ thêm một đường thẳng mới song song với một đường thẳng đã cho. BÀI 7. ĐỊNH LÍ. + Dạng 1. Phát biểu một định lí hoặc chọn câu phát biểu đúng. + Dạng 2. Viết giả thiết và kết luận của định lí. + Dạng 3. Nêu căn cứ của các khẳng định trong chứng minh định lí. Sắp xếp các câu chứng minh định lí cho đúng thứ tự. + Dạng 4. Cho giả thiết, kết luận của một định lí, diễn đạt định lí đó bằng lời. ÔN TẬP CHƯƠNG 1. + Dạng 1. Kiểm tra hai đường thẳng song song, hai đường thẳng vuông góc. Vẽ đường thẳng song song, đường thẳng vuông góc. Đường trung trực. + Dạng 2. Tính số đo góc. + Dạng 3. Phát biểu một định lí bằng cách điền vào chỗ trống, bằng cách nhìn vào hình vẽ hoặc chọn câu phát biểu đúng. + Dạng 4. Chứng minh một định lí. Tài Liệu Toán 7Ghi chú Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên bằng cách gửi về Facebook TOÁN MATH Email [email protected]
Chuyên đề luyện thi vào 10 Tìm điều kiện của m để hai đường thẳng cắt nhau, song song, vuông góc hoặc trùng nhauI. Bài toán tìm m để hai đường thẳng cắt nhau, song song, trùng nhau và vuông gócII. Bài tập ví dụ về bài toán tìm m để hai đường thẳng song song, cắt nhau, trùng nhau và vuông gócIII. Bài tập tự luyện về bài toán chứng minh đồ thị hàm số luôn đi qua một điểm cố địnhBạn đang xem 2 Đường thẳng vuông góc lớp 10 chuẩn nhất, lý thuyết phương trình Đường thẳngTìm m để hai đường thẳng song song, cắt nhau, vuông góc hoặc trùng nhau là một dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán được biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham Câu hỏi trắc nghiệm Hàm số bậc nhấtToán nâng cao lớp 9 Chủ đề 4 Hàm số bậc nhất - hàm số bậc haiHàm số bậc nhấtĐể tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 9, mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 9 sau Nhóm Luyện thi lớp 9 lên 10. Rất mong nhận được sự ủng hộ của các thầy cô và các đề này được biên soạn gồm hướng dẫn giải chi tiết cho dạng bài tập "Tìm m thỏa mãn điều kiện vị trí tương đối của hai đường thẳng", vốn là một câu hỏi điển hình trong đề thi tuyển sinh vào lớp 10. Đồng thời tài liệu cũng tổng hợp thêm các bài toán để các bạn học sinh có thể luyện tập, củng cố kiến thức. Qua đó sẽ giúp các bạn học sinh ôn tập các kiến thức, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi thêm Hướng Dẫn Cách Chơi 2 Acc Vltk Mobile Trên Bluestacks, Cách Mở Nhiều Cửa Sổ Bluestacks Cùng LúcI. Bài toán tìm m để hai đường thẳng cắt nhau, song song, trùng nhau và vuông góc+ Cho hai đường thẳng d y = ax + b và d’ y = a’x + b- Hai đường thẳng cắt nhau d cắt d’ khi a ≠ a"- Hai đường thẳng song song với nhau d // d’ khi a = a" và b ≠ b"- Hai đường thẳng vuông góc d ⊥ d" khi = -1- Hai đường thẳng trùng nhau khi a = a" và b = b"+ Nếu bài toán cho 2 hàm số bậc nhất y = ax + b và y = a’x + b’ thì phải thêm điều kiện a ≠ 0 và a" ≠ 0II. Bài tập ví dụ về bài toán tìm m để hai đường thẳng song song, cắt nhau, trùng nhau và vuông gócBài 1 Cho hai hàm số y = kx + m -2 và y = 5 - k.x + 4 - m. Tìm m, k để đồ thị của hai hàm sốa, Trùng nhaub, Song song với nhauc, Cắt nhauLời giảiĐể hàm số y = kx + m - 2 là hàm số bậc nhất khi k ≠ 0Để hàm số y = 5 - kx + 4 - m là hàm số bậc nhất khi 5 - k ≠ 0 ⇔ k ≠ 5a, Để đồ thị của hai hàm số trùng nhauVậy với ; m = 3 thì đồ thị của hai hàm số trùng nhaub, Để đồ thị của hai hàm số song song với nhau Vậy với ; m ≠ 3 thì đồ thị của hai hàm số song song với nhauc, Để đồ thị của hai hàm số cắt nhau ⇔ k ≠ 5 - k ⇔ 2k ≠ 5 ⇔Vậy với thì hai đồ thị hàm số cắt nhauBài 2 Cho hàm số y = 2m - 3x + m - 5. Tìm m để đồ thị hàm sốa, Tạo với 2 trục tọa độ một tam giác vuông cânb, Cắt đường thẳng y = 3x - 4 tại một điểm trên Oyc, Cắt đường thẳng y = -x - 3 tại một điểm trên OxLời giảiĐể hàm số là hàm số bậc nhất ⇔ 2m - 3 ≠ 0 ⇔ a, Gọi giao điểm của hàm số với trục Ox là A. Tọa độ của điểm A là Độ dài của đoạn Gọi giao điểm của hàm số với trục Oy là B. Tọa độ của điểm B là B 0; m - 5Độ dài của đoạn OB = m - 5 Ta có tam giác OAB là tam giác vuông tại AĐể tam giác OAB là tam giác vuông cân Vậy với m = 1 hoặc m = 2 thì đồ thị hàm số tạo với hai trục tọa độ tam giác vuông cânb, Gọi A là điểm đồ thị hàm số cắt đường thẳng y = 3x - 4 tại một điểm trên trục Oy trục tung⇒ A 0; bThay tọa độ điểm A vào đồ thị hàm số y = 3x - 4 ta có b = 4Điểm A0; 4 thuộc đồ thị hàm số y = 2m - 3x + m - 5 nên ta có4 = 2m - 3. 0 + m - 5 ⇔ m - 5 = 4 ⇔ m = 9 thỏa mãnVậy với m = 9 thì đồ thị hàm số cắt đường thẳng y = 3x - 4 tại một điểm trên trục tungc, Gọi B là điểm đồ thị hàm số cắt đường thẳng y = - x - 3 tại một điểm trên trục Ox trục hoành⇒ B a; 0Thay tọa độ điểm B vào đồ thị hàm số y = - x - 3 ta có a = - 3Điểm B -3; 0 thuộc đồ thị hàm số y = -x - 3 nên ta có0 = -3. 2m - 3 + m - 5 ⇔ -5m + 4 = 0 ⇔ m = thỏa mãnVậy với thì đồ thị hàm số cắt đường thẳng y = -x - 3 tại một điểm trên trục hoànhBài 3 Cho hai đường thẳng d1 y = m + 1x + 2 và d2 y = 2x + 1. Tìm m để hai đường thẳng cắt nhau tại một điểm có hoành độ và tung độ trái dấuLời giảiĐể hai đường thẳng cắt nhau thì m + 1 ≠ 2 ⇔ m ≠ 1Phương trình hoành độ giao điểmm + 1 x + 2 = 2x + 1⇔ mx + x + 2 = 2x + 1⇔ x m + 1 - 2 = -1⇔ x m - 1 = -1Với Để hoành độ và tung độ trái dấu thì Vậy A1; 1Ba đường thẳng đồng quy nên đồ thị hàm số y = m - 2x + m + 3 đi qua điểm A1; 1Thay tọa độ điểm A vào phương trình ta có 1 = 1.m - 2 + m + 3 hay m = 0Vậy với m = 0 thì ba đường thẳng đồng quyIII. Bài tập tự luyện về bài toán chứng minh đồ thị hàm số luôn đi qua một điểm cố địnhBài 1 Cho hàm số y = 2x + 3k và y = 2m + 1x + 2k - 3. Tìm điều kiện của m và k để đồ thị của hai hàm số là Cách tính delta và delta phẩy phương trình bậc 2 Suy nghĩ về câu tục ngữ Một cây làm chẳng nên non, ba cây chụm lại nên hòn núi cao Viết đoạn văn nghị luận về hiện tượng học tủ, học vẹt 19 Đoạn văn viết về Sở thích bằng tiếng Anh Trình bày suy nghĩ của em về trách nhiệm của thế hệ trẻ hôm nay đối với đất nước trong hoàn cảnh mới Tính m để phương trình bậc hai có hai nghiệm trái dấu Tìm m để phương trình có 2 nghiệm x1 x2 thỏa mãn điều kiện cho trước
2 đường thẳng vuông góc